This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ||
| isf32lem.b | |||
| isf32lem.c | |||
| isf32lem.d | |||
| isf32lem.e | |||
| isf32lem.f | |||
| isf32lem.g | |||
| Assertion | isf32lem10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ||
| 2 | isf32lem.b | ||
| 3 | isf32lem.c | ||
| 4 | isf32lem.d | ||
| 5 | isf32lem.e | ||
| 6 | isf32lem.f | ||
| 7 | isf32lem.g | ||
| 8 | 1 2 3 4 5 6 7 | isf32lem9 | |
| 9 | fof | ||
| 10 | 8 9 | syl | |
| 11 | fex | ||
| 12 | 10 11 | sylan | |
| 13 | 12 | ex | |
| 14 | fowdom | ||
| 15 | 14 | expcom | |
| 16 | 8 13 15 | sylsyld |