This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of iseri , avoiding the usage of mptru and T. as antecedent by using ax-mp and one of the hypotheses as antecedent. This results, however, in a slightly longer proof. (Contributed by AV, 30-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseri.1 | ⊢ Rel 𝑅 | |
| iseri.2 | ⊢ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) | ||
| iseri.3 | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) | ||
| iseri.4 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) | ||
| Assertion | iseriALT | ⊢ 𝑅 Er 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseri.1 | ⊢ Rel 𝑅 | |
| 2 | iseri.2 | ⊢ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) | |
| 3 | iseri.3 | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) | |
| 4 | iseri.4 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) | |
| 5 | id | ⊢ ( Rel 𝑅 → Rel 𝑅 ) | |
| 6 | 2 | adantl | ⊢ ( ( Rel 𝑅 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 𝑅 𝑥 ) |
| 7 | 3 | adantl | ⊢ ( ( Rel 𝑅 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) |
| 8 | 4 | a1i | ⊢ ( Rel 𝑅 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) ) |
| 9 | 5 6 7 8 | iserd | ⊢ ( Rel 𝑅 → 𝑅 Er 𝐴 ) |
| 10 | 1 9 | ax-mp | ⊢ 𝑅 Er 𝐴 |