This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of iseri , avoiding the usage of mptru and T. as antecedent by using ax-mp and one of the hypotheses as antecedent. This results, however, in a slightly longer proof. (Contributed by AV, 30-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseri.1 | |- Rel R |
|
| iseri.2 | |- ( x R y -> y R x ) |
||
| iseri.3 | |- ( ( x R y /\ y R z ) -> x R z ) |
||
| iseri.4 | |- ( x e. A <-> x R x ) |
||
| Assertion | iseriALT | |- R Er A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseri.1 | |- Rel R |
|
| 2 | iseri.2 | |- ( x R y -> y R x ) |
|
| 3 | iseri.3 | |- ( ( x R y /\ y R z ) -> x R z ) |
|
| 4 | iseri.4 | |- ( x e. A <-> x R x ) |
|
| 5 | id | |- ( Rel R -> Rel R ) |
|
| 6 | 2 | adantl | |- ( ( Rel R /\ x R y ) -> y R x ) |
| 7 | 3 | adantl | |- ( ( Rel R /\ ( x R y /\ y R z ) ) -> x R z ) |
| 8 | 4 | a1i | |- ( Rel R -> ( x e. A <-> x R x ) ) |
| 9 | 5 6 7 8 | iserd | |- ( Rel R -> R Er A ) |
| 10 | 1 9 | ax-mp | |- R Er A |