This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a reflexive, symmetric and transitive binary relation to be an equivalence relation over a class V . (Contributed by AV, 11-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brinxper.r | ⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∼ 𝑥 ) | |
| brinxper.s | ⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) | ||
| brinxper.t | ⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) → 𝑥 ∼ 𝑧 ) ) | ||
| Assertion | brinxper | ⊢ ( ∼ ∩ ( 𝑉 × 𝑉 ) ) Er 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxper.r | ⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∼ 𝑥 ) | |
| 2 | brinxper.s | ⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) | |
| 3 | brinxper.t | ⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) → 𝑥 ∼ 𝑧 ) ) | |
| 4 | relinxp | ⊢ Rel ( ∼ ∩ ( 𝑉 × 𝑉 ) ) | |
| 5 | brxp | ⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) |
| 7 | ancom | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) | |
| 8 | brxp | ⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) | |
| 9 | 7 8 | sylbb2 | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) |
| 10 | 6 9 | jctird | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) ) |
| 11 | 5 10 | sylbi | ⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑦 → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) ) |
| 12 | 11 | impcom | ⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 13 | brin | ⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ↔ ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) ) | |
| 14 | brin | ⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ↔ ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) | |
| 15 | 12 13 14 | 3imtr4i | ⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 → 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ) |
| 16 | brin | ⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ↔ ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) ) | |
| 17 | brxp | ⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) | |
| 18 | 3 | expd | ⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) ) |
| 20 | 19 | impcom | ⊢ ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) |
| 21 | 20 | com12 | ⊢ ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∼ 𝑧 ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∼ 𝑧 ) ) |
| 23 | 22 | imp | ⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → 𝑥 ∼ 𝑧 ) |
| 24 | simplr | ⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) → 𝑧 ∈ 𝑉 ) | |
| 25 | simprl | ⊢ ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) | |
| 26 | 24 25 | anim12ci | ⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
| 27 | 23 26 | jca | ⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) |
| 28 | 27 | exp31 | ⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) ) |
| 29 | 17 28 | sylbi | ⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑧 → ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) ) |
| 30 | 29 | impcom | ⊢ ( ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) |
| 31 | 5 | anbi2i | ⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) ↔ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 32 | brxp | ⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) | |
| 33 | 32 | anbi2i | ⊢ ( ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ↔ ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) |
| 34 | 30 31 33 | 3imtr4g | ⊢ ( ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 35 | 16 34 | sylbi | ⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 36 | 35 | com12 | ⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 37 | 13 36 | sylbi | ⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 → ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ∧ 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) |
| 39 | brin | ⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ↔ ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) | |
| 40 | 38 39 | sylibr | ⊢ ( ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ∧ 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) → 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) |
| 41 | id | ⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑉 ) | |
| 42 | brxp | ⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) | |
| 43 | 41 41 42 | sylanbrc | ⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) |
| 44 | 1 43 | jca | ⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 45 | 42 | simplbi | ⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑥 → 𝑥 ∈ 𝑉 ) |
| 46 | 45 | adantl | ⊢ ( ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) → 𝑥 ∈ 𝑉 ) |
| 47 | 44 46 | impbii | ⊢ ( 𝑥 ∈ 𝑉 ↔ ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 48 | brin | ⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ↔ ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) | |
| 49 | 47 48 | bitr4i | ⊢ ( 𝑥 ∈ 𝑉 ↔ 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ) |
| 50 | 4 15 40 49 | iseri | ⊢ ( ∼ ∩ ( 𝑉 × 𝑉 ) ) Er 𝑉 |