This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
iseriALT
Metamath Proof Explorer
Description: Alternate proof of iseri , avoiding the usage of mptru and T. as
antecedent by using ax-mp and one of the hypotheses as antecedent.
This results, however, in a slightly longer proof. (Contributed by AV , 30-Apr-2021) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
iseri.1
⊢ Rel ⁡ R
iseri.2
⊢ x R y → y R x
iseri.3
⊢ x R y ∧ y R z → x R z
iseri.4
⊢ x ∈ A ↔ x R x
Assertion
iseriALT
⊢ R Er A
Proof
Step
Hyp
Ref
Expression
1
iseri.1
⊢ Rel ⁡ R
2
iseri.2
⊢ x R y → y R x
3
iseri.3
⊢ x R y ∧ y R z → x R z
4
iseri.4
⊢ x ∈ A ↔ x R x
5
id
⊢ Rel ⁡ R → Rel ⁡ R
6
2
adantl
⊢ Rel ⁡ R ∧ x R y → y R x
7
3
adantl
⊢ Rel ⁡ R ∧ x R y ∧ y R z → x R z
8
4
a1i
⊢ Rel ⁡ R → x ∈ A ↔ x R x
9
5 6 7 8
iserd
⊢ Rel ⁡ R → R Er A
10
1 9
ax-mp
⊢ R Er A