This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring is a ring in which 1 =/= 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdivrng1.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| isdivrng1.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| isdivrng1.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| isdivrng1.4 | ⊢ 𝑋 = ran 𝐺 | ||
| isdivrng2.5 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | ||
| Assertion | isdrngo3 | ⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdivrng1.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | isdivrng1.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | isdivrng1.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 4 | isdivrng1.4 | ⊢ 𝑋 = ran 𝐺 | |
| 5 | isdivrng2.5 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | |
| 6 | 1 2 3 4 5 | isdrngo2 | ⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 7 | eldifi | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑥 ∈ 𝑋 ) | |
| 8 | difss | ⊢ ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 | |
| 9 | ssrexv | ⊢ ( ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
| 11 | neeq1 | ⊢ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 → ( ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 ↔ 𝑈 ≠ 𝑍 ) ) | |
| 12 | 11 | biimparc | ⊢ ( ( 𝑈 ≠ 𝑍 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 ) |
| 13 | 3 4 1 2 | rngolz | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑍 𝐻 𝑥 ) = 𝑍 ) |
| 14 | oveq1 | ⊢ ( 𝑦 = 𝑍 → ( 𝑦 𝐻 𝑥 ) = ( 𝑍 𝐻 𝑥 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑦 = 𝑍 → ( ( 𝑦 𝐻 𝑥 ) = 𝑍 ↔ ( 𝑍 𝐻 𝑥 ) = 𝑍 ) ) |
| 16 | 13 15 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 = 𝑍 → ( 𝑦 𝐻 𝑥 ) = 𝑍 ) ) |
| 17 | 16 | necon3d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 → 𝑦 ≠ 𝑍 ) ) |
| 18 | 17 | imp | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 ) → 𝑦 ≠ 𝑍 ) |
| 19 | 12 18 | sylan2 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑈 ≠ 𝑍 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) → 𝑦 ≠ 𝑍 ) |
| 20 | 19 | an4s | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) → 𝑦 ≠ 𝑍 ) |
| 21 | 20 | anassrs | ⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → 𝑦 ≠ 𝑍 ) |
| 22 | pm3.2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝑦 ≠ 𝑍 → ( 𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍 ) ) ) | |
| 23 | 21 22 | syl5com | ⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍 ) ) ) |
| 24 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍 ) ) | |
| 25 | 23 24 | imbitrrdi | ⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 ∈ 𝑋 → 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 26 | 25 | imdistanda | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
| 27 | ancom | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ↔ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ 𝑋 ) ) | |
| 28 | ancom | ⊢ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ↔ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) | |
| 29 | 26 27 28 | 3imtr4g | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 30 | 29 | reximdv2 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 → ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 31 | 10 30 | impbid2 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 32 | 7 31 | sylan2 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 33 | 32 | ralbidva | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 34 | 33 | pm5.32da | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ↔ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 35 | 34 | pm5.32i | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ↔ ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 36 | 6 35 | bitri | ⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |