This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring is a ring in which 1 =/= 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdivrng1.1 | |- G = ( 1st ` R ) |
|
| isdivrng1.2 | |- H = ( 2nd ` R ) |
||
| isdivrng1.3 | |- Z = ( GId ` G ) |
||
| isdivrng1.4 | |- X = ran G |
||
| isdivrng2.5 | |- U = ( GId ` H ) |
||
| Assertion | isdrngo3 | |- ( R e. DivRingOps <-> ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdivrng1.1 | |- G = ( 1st ` R ) |
|
| 2 | isdivrng1.2 | |- H = ( 2nd ` R ) |
|
| 3 | isdivrng1.3 | |- Z = ( GId ` G ) |
|
| 4 | isdivrng1.4 | |- X = ran G |
|
| 5 | isdivrng2.5 | |- U = ( GId ` H ) |
|
| 6 | 1 2 3 4 5 | isdrngo2 | |- ( R e. DivRingOps <-> ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U ) ) ) |
| 7 | eldifi | |- ( x e. ( X \ { Z } ) -> x e. X ) |
|
| 8 | difss | |- ( X \ { Z } ) C_ X |
|
| 9 | ssrexv | |- ( ( X \ { Z } ) C_ X -> ( E. y e. ( X \ { Z } ) ( y H x ) = U -> E. y e. X ( y H x ) = U ) ) |
|
| 10 | 8 9 | ax-mp | |- ( E. y e. ( X \ { Z } ) ( y H x ) = U -> E. y e. X ( y H x ) = U ) |
| 11 | neeq1 | |- ( ( y H x ) = U -> ( ( y H x ) =/= Z <-> U =/= Z ) ) |
|
| 12 | 11 | biimparc | |- ( ( U =/= Z /\ ( y H x ) = U ) -> ( y H x ) =/= Z ) |
| 13 | 3 4 1 2 | rngolz | |- ( ( R e. RingOps /\ x e. X ) -> ( Z H x ) = Z ) |
| 14 | oveq1 | |- ( y = Z -> ( y H x ) = ( Z H x ) ) |
|
| 15 | 14 | eqeq1d | |- ( y = Z -> ( ( y H x ) = Z <-> ( Z H x ) = Z ) ) |
| 16 | 13 15 | syl5ibrcom | |- ( ( R e. RingOps /\ x e. X ) -> ( y = Z -> ( y H x ) = Z ) ) |
| 17 | 16 | necon3d | |- ( ( R e. RingOps /\ x e. X ) -> ( ( y H x ) =/= Z -> y =/= Z ) ) |
| 18 | 17 | imp | |- ( ( ( R e. RingOps /\ x e. X ) /\ ( y H x ) =/= Z ) -> y =/= Z ) |
| 19 | 12 18 | sylan2 | |- ( ( ( R e. RingOps /\ x e. X ) /\ ( U =/= Z /\ ( y H x ) = U ) ) -> y =/= Z ) |
| 20 | 19 | an4s | |- ( ( ( R e. RingOps /\ U =/= Z ) /\ ( x e. X /\ ( y H x ) = U ) ) -> y =/= Z ) |
| 21 | 20 | anassrs | |- ( ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) /\ ( y H x ) = U ) -> y =/= Z ) |
| 22 | pm3.2 | |- ( y e. X -> ( y =/= Z -> ( y e. X /\ y =/= Z ) ) ) |
|
| 23 | 21 22 | syl5com | |- ( ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) /\ ( y H x ) = U ) -> ( y e. X -> ( y e. X /\ y =/= Z ) ) ) |
| 24 | eldifsn | |- ( y e. ( X \ { Z } ) <-> ( y e. X /\ y =/= Z ) ) |
|
| 25 | 23 24 | imbitrrdi | |- ( ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) /\ ( y H x ) = U ) -> ( y e. X -> y e. ( X \ { Z } ) ) ) |
| 26 | 25 | imdistanda | |- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( ( ( y H x ) = U /\ y e. X ) -> ( ( y H x ) = U /\ y e. ( X \ { Z } ) ) ) ) |
| 27 | ancom | |- ( ( y e. X /\ ( y H x ) = U ) <-> ( ( y H x ) = U /\ y e. X ) ) |
|
| 28 | ancom | |- ( ( y e. ( X \ { Z } ) /\ ( y H x ) = U ) <-> ( ( y H x ) = U /\ y e. ( X \ { Z } ) ) ) |
|
| 29 | 26 27 28 | 3imtr4g | |- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( ( y e. X /\ ( y H x ) = U ) -> ( y e. ( X \ { Z } ) /\ ( y H x ) = U ) ) ) |
| 30 | 29 | reximdv2 | |- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( E. y e. X ( y H x ) = U -> E. y e. ( X \ { Z } ) ( y H x ) = U ) ) |
| 31 | 10 30 | impbid2 | |- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( E. y e. ( X \ { Z } ) ( y H x ) = U <-> E. y e. X ( y H x ) = U ) ) |
| 32 | 7 31 | sylan2 | |- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. ( X \ { Z } ) ) -> ( E. y e. ( X \ { Z } ) ( y H x ) = U <-> E. y e. X ( y H x ) = U ) ) |
| 33 | 32 | ralbidva | |- ( ( R e. RingOps /\ U =/= Z ) -> ( A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U <-> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) |
| 34 | 33 | pm5.32da | |- ( R e. RingOps -> ( ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U ) <-> ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
| 35 | 34 | pm5.32i | |- ( ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U ) ) <-> ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
| 36 | 6 35 | bitri | |- ( R e. DivRingOps <-> ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |