This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a division ring". (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isdivrngo | ⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝐺 DivRingOps 𝐻 ↔ 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ) | |
| 2 | df-drngo | ⊢ DivRingOps = { 〈 𝑥 , 𝑦 〉 ∣ ( 〈 𝑥 , 𝑦 〉 ∈ RingOps ∧ ( 𝑦 ↾ ( ( ran 𝑥 ∖ { ( GId ‘ 𝑥 ) } ) × ( ran 𝑥 ∖ { ( GId ‘ 𝑥 ) } ) ) ) ∈ GrpOp ) } | |
| 3 | 2 | relopabiv | ⊢ Rel DivRingOps |
| 4 | 3 | brrelex1i | ⊢ ( 𝐺 DivRingOps 𝐻 → 𝐺 ∈ V ) |
| 5 | 1 4 | sylbir | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps → 𝐺 ∈ V ) |
| 6 | 5 | anim1i | ⊢ ( ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ∧ 𝐻 ∈ 𝐴 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝐻 ∈ 𝐴 ∧ 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) ) |
| 8 | rngoablo2 | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ AbelOp ) | |
| 9 | elex | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ V ) | |
| 10 | 8 9 | syl | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ V ) |
| 11 | 10 | ad2antrl | ⊢ ( ( 𝐻 ∈ 𝐴 ∧ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) → 𝐺 ∈ V ) |
| 12 | simpl | ⊢ ( ( 𝐻 ∈ 𝐴 ∧ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) → 𝐻 ∈ 𝐴 ) | |
| 13 | 11 12 | jca | ⊢ ( ( 𝐻 ∈ 𝐴 ∧ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) ) |
| 14 | df-drngo | ⊢ DivRingOps = { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } | |
| 15 | 14 | eleq2i | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ↔ 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } ) |
| 16 | opeq1 | ⊢ ( 𝑔 = 𝐺 → 〈 𝑔 , ℎ 〉 = 〈 𝐺 , ℎ 〉 ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑔 = 𝐺 → ( 〈 𝑔 , ℎ 〉 ∈ RingOps ↔ 〈 𝐺 , ℎ 〉 ∈ RingOps ) ) |
| 18 | rneq | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) | |
| 19 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) ) | |
| 20 | 19 | sneqd | ⊢ ( 𝑔 = 𝐺 → { ( GId ‘ 𝑔 ) } = { ( GId ‘ 𝐺 ) } ) |
| 21 | 18 20 | difeq12d | ⊢ ( 𝑔 = 𝐺 → ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) = ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) |
| 22 | 21 | sqxpeqd | ⊢ ( 𝑔 = 𝐺 → ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) = ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) |
| 23 | 22 | reseq2d | ⊢ ( 𝑔 = 𝐺 → ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) = ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ) |
| 24 | 23 | eleq1d | ⊢ ( 𝑔 = 𝐺 → ( ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ↔ ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) |
| 25 | 17 24 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) ↔ ( 〈 𝐺 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
| 26 | opeq2 | ⊢ ( ℎ = 𝐻 → 〈 𝐺 , ℎ 〉 = 〈 𝐺 , 𝐻 〉 ) | |
| 27 | 26 | eleq1d | ⊢ ( ℎ = 𝐻 → ( 〈 𝐺 , ℎ 〉 ∈ RingOps ↔ 〈 𝐺 , 𝐻 〉 ∈ RingOps ) ) |
| 28 | reseq1 | ⊢ ( ℎ = 𝐻 → ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) = ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ) | |
| 29 | 28 | eleq1d | ⊢ ( ℎ = 𝐻 → ( ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ↔ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) |
| 30 | 27 29 | anbi12d | ⊢ ( ℎ = 𝐻 → ( ( 〈 𝐺 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
| 31 | 25 30 | opelopabg | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
| 32 | 15 31 | bitrid | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
| 33 | 7 13 32 | pm5.21nd | ⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |