This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngoablo2 | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ AbelOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝐺 RingOps 𝐻 ↔ 〈 𝐺 , 𝐻 〉 ∈ RingOps ) | |
| 2 | relrngo | ⊢ Rel RingOps | |
| 3 | 2 | brrelex12i | ⊢ ( 𝐺 RingOps 𝐻 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 4 | op1stg | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐺 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐺 RingOps 𝐻 → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐺 ) |
| 6 | 1 5 | sylbir | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐺 ) |
| 7 | eqid | ⊢ ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) | |
| 8 | 7 | rngoablo | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) ∈ AbelOp ) |
| 9 | 6 8 | eqeltrrd | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ AbelOp ) |