This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all division rings (sometimes called skew fields). A division ring is a unital ring where every element except the additive identity has a multiplicative inverse. (Contributed by NM, 4-Apr-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-drngo | ⊢ DivRingOps = { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdrng | ⊢ DivRingOps | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | vh | ⊢ ℎ | |
| 3 | 1 | cv | ⊢ 𝑔 |
| 4 | 2 | cv | ⊢ ℎ |
| 5 | 3 4 | cop | ⊢ 〈 𝑔 , ℎ 〉 |
| 6 | crngo | ⊢ RingOps | |
| 7 | 5 6 | wcel | ⊢ 〈 𝑔 , ℎ 〉 ∈ RingOps |
| 8 | 3 | crn | ⊢ ran 𝑔 |
| 9 | cgi | ⊢ GId | |
| 10 | 3 9 | cfv | ⊢ ( GId ‘ 𝑔 ) |
| 11 | 10 | csn | ⊢ { ( GId ‘ 𝑔 ) } |
| 12 | 8 11 | cdif | ⊢ ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) |
| 13 | 12 12 | cxp | ⊢ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) |
| 14 | 4 13 | cres | ⊢ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) |
| 15 | cgr | ⊢ GrpOp | |
| 16 | 14 15 | wcel | ⊢ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp |
| 17 | 7 16 | wa | ⊢ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) |
| 18 | 17 1 2 | copab | ⊢ { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } |
| 19 | 0 18 | wceq | ⊢ DivRingOps = { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } |