This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ||
| iscyg.2 | |||
| iscyg3.e | |||
| Assertion | iscyg2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ||
| 2 | iscyg.2 | ||
| 3 | iscyg3.e | ||
| 4 | 1 2 | iscyg | |
| 5 | 3 | neeq1i | |
| 6 | rabn0 | ||
| 7 | 5 6 | bitri | |
| 8 | 7 | anbi2i | |
| 9 | 4 8 | bitr4i |