This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a subcomplex vector space". (Contributed by NM, 31-May-2008) (Revised by AV, 4-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscvsp.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| iscvsp.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| iscvsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| iscvsp.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| iscvsp.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| Assertion | iscvsp | ⊢ ( 𝑊 ∈ ℂVec ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvsp.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 2 | iscvsp.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | iscvsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | iscvsp.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 5 | iscvsp.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | iscvs | ⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) | |
| 7 | 1 2 3 4 5 | isclmp | ⊢ ( 𝑊 ∈ ℂMod ↔ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
| 8 | 7 | anbi2ci | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) ) |
| 9 | anass | ⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) ) | |
| 10 | 3anan12 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) | |
| 11 | 10 | anbi2i | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) ) |
| 12 | anass | ⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) ) | |
| 13 | 4 | eqcomi | ⊢ ( Scalar ‘ 𝑊 ) = 𝑆 |
| 14 | 13 | eleq1i | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ↔ 𝑆 ∈ DivRing ) |
| 15 | 14 | anbi1i | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ) |
| 16 | 15 | anbi1i | ⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 17 | 11 12 16 | 3bitr2i | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 18 | 3anan12 | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) | |
| 19 | 17 18 | bitr4i | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
| 20 | 19 | anbi1i | ⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
| 21 | 8 9 20 | 3bitr2i | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
| 22 | 6 21 | bitri | ⊢ ( 𝑊 ∈ ℂVec ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |