This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscvs | ⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cvs | ⊢ ℂVec = ( ℂMod ∩ LVec ) | |
| 2 | 1 | elin2 | ⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) ) |
| 3 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | 4 | islvec | ⊢ ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
| 6 | 5 | a1i | ⊢ ( 𝑊 ∈ ℂMod → ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) ) |
| 7 | 3 6 | mpbirand | ⊢ ( 𝑊 ∈ ℂMod → ( 𝑊 ∈ LVec ↔ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
| 8 | 7 | pm5.32i | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) ↔ ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
| 9 | 2 8 | bitri | ⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |