This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a subcomplex vector space". (Contributed by NM, 31-May-2008) (Revised by AV, 4-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscvsp.t | |- .x. = ( .s ` W ) |
|
| iscvsp.a | |- .+ = ( +g ` W ) |
||
| iscvsp.v | |- V = ( Base ` W ) |
||
| iscvsp.s | |- S = ( Scalar ` W ) |
||
| iscvsp.k | |- K = ( Base ` S ) |
||
| Assertion | iscvsp | |- ( W e. CVec <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvsp.t | |- .x. = ( .s ` W ) |
|
| 2 | iscvsp.a | |- .+ = ( +g ` W ) |
|
| 3 | iscvsp.v | |- V = ( Base ` W ) |
|
| 4 | iscvsp.s | |- S = ( Scalar ` W ) |
|
| 5 | iscvsp.k | |- K = ( Base ` S ) |
|
| 6 | iscvs | |- ( W e. CVec <-> ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) ) |
|
| 7 | 1 2 3 4 5 | isclmp | |- ( W e. CMod <-> ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
| 8 | 7 | anbi2ci | |- ( ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) <-> ( ( Scalar ` W ) e. DivRing /\ ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) ) |
| 9 | anass | |- ( ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) ) |
|
| 10 | 3anan12 | |- ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) <-> ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
|
| 11 | 10 | anbi2i | |- ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) ) |
| 12 | anass | |- ( ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) ) |
|
| 13 | 4 | eqcomi | |- ( Scalar ` W ) = S |
| 14 | 13 | eleq1i | |- ( ( Scalar ` W ) e. DivRing <-> S e. DivRing ) |
| 15 | 14 | anbi1i | |- ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) <-> ( S e. DivRing /\ S = ( CCfld |`s K ) ) ) |
| 16 | 15 | anbi1i | |- ( ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
| 17 | 11 12 16 | 3bitr2i | |- ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
| 18 | 3anan12 | |- ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
|
| 19 | 17 18 | bitr4i | |- ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) ) |
| 20 | 19 | anbi1i | |- ( ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
| 21 | 8 9 20 | 3bitr2i | |- ( ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
| 22 | 6 21 | bitri | |- ( W e. CVec <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |