This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006) (Revised by AV, 4-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscvsp.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| iscvsp.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| iscvsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| iscvsp.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| iscvsp.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| iscvsi.1 | ⊢ 𝑊 ∈ Grp | ||
| iscvsi.2 | ⊢ 𝑆 = ( ℂfld ↾s 𝐾 ) | ||
| iscvsi.3 | ⊢ 𝑆 ∈ DivRing | ||
| iscvsi.4 | ⊢ 𝐾 ∈ ( SubRing ‘ ℂfld ) | ||
| iscvsi.5 | ⊢ ( 𝑥 ∈ 𝑉 → ( 1 · 𝑥 ) = 𝑥 ) | ||
| iscvsi.6 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑦 · 𝑥 ) ∈ 𝑉 ) | ||
| iscvsi.7 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) | ||
| iscvsi.8 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ) | ||
| iscvsi.9 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) | ||
| Assertion | iscvsi | ⊢ 𝑊 ∈ ℂVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvsp.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 2 | iscvsp.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | iscvsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | iscvsp.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 5 | iscvsp.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | iscvsi.1 | ⊢ 𝑊 ∈ Grp | |
| 7 | iscvsi.2 | ⊢ 𝑆 = ( ℂfld ↾s 𝐾 ) | |
| 8 | iscvsi.3 | ⊢ 𝑆 ∈ DivRing | |
| 9 | iscvsi.4 | ⊢ 𝐾 ∈ ( SubRing ‘ ℂfld ) | |
| 10 | iscvsi.5 | ⊢ ( 𝑥 ∈ 𝑉 → ( 1 · 𝑥 ) = 𝑥 ) | |
| 11 | iscvsi.6 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑦 · 𝑥 ) ∈ 𝑉 ) | |
| 12 | iscvsi.7 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 13 | iscvsi.8 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ) | |
| 14 | iscvsi.9 | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) | |
| 15 | 8 7 | pm3.2i | ⊢ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) |
| 16 | 6 15 9 | 3pm3.2i | ⊢ ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 17 | 11 | ancoms | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑦 · 𝑥 ) ∈ 𝑉 ) |
| 18 | 12 | 3com12 | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) |
| 19 | 18 | 3expa | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) |
| 21 | 13 14 | jca | ⊢ ( ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) |
| 22 | 21 | 3comr | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) → ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) |
| 23 | 22 | 3expa | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 ∈ 𝐾 ) → ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) |
| 24 | 23 | ralrimiva | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) |
| 25 | 17 20 24 | 3jca | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) |
| 26 | 25 | ralrimiva | ⊢ ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) |
| 27 | 10 26 | jca | ⊢ ( 𝑥 ∈ 𝑉 → ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) |
| 28 | 27 | rgen | ⊢ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) |
| 29 | 1 2 3 4 5 | iscvsp | ⊢ ( 𝑊 ∈ ℂVec ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
| 30 | 16 28 29 | mpbir2an | ⊢ 𝑊 ∈ ℂVec |