This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscvlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| iscvlat.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| iscvlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| iscvlat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | iscvlat | ⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | iscvlat.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | iscvlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | iscvlat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 6 | 5 4 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 7 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 9 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 11 | 10 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) 𝑥 ↔ 𝑝 ≤ 𝑥 ) ) |
| 12 | 11 | notbid | ⊢ ( 𝑘 = 𝐾 → ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ↔ ¬ 𝑝 ≤ 𝑥 ) ) |
| 13 | eqidd | ⊢ ( 𝑘 = 𝐾 → 𝑝 = 𝑝 ) | |
| 14 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) | |
| 15 | 14 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 16 | 15 | oveqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) = ( 𝑥 ∨ 𝑞 ) ) |
| 17 | 13 10 16 | breq123d | ⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ) |
| 18 | 12 17 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) ↔ ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ) ) |
| 19 | eqidd | ⊢ ( 𝑘 = 𝐾 → 𝑞 = 𝑞 ) | |
| 20 | 15 | oveqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) = ( 𝑥 ∨ 𝑝 ) ) |
| 21 | 19 10 20 | breq123d | ⊢ ( 𝑘 = 𝐾 → ( 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ↔ 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 23 | 8 22 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 24 | 6 23 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 25 | 6 24 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 26 | df-cvlat | ⊢ CvLat = { 𝑘 ∈ AtLat ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) } | |
| 27 | 25 26 | elrab2 | ⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |