This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscvlat.b | |- B = ( Base ` K ) |
|
| iscvlat.l | |- .<_ = ( le ` K ) |
||
| iscvlat.j | |- .\/ = ( join ` K ) |
||
| iscvlat.a | |- A = ( Atoms ` K ) |
||
| Assertion | iscvlat | |- ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvlat.b | |- B = ( Base ` K ) |
|
| 2 | iscvlat.l | |- .<_ = ( le ` K ) |
|
| 3 | iscvlat.j | |- .\/ = ( join ` K ) |
|
| 4 | iscvlat.a | |- A = ( Atoms ` K ) |
|
| 5 | fveq2 | |- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
|
| 6 | 5 4 | eqtr4di | |- ( k = K -> ( Atoms ` k ) = A ) |
| 7 | fveq2 | |- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( k = K -> ( Base ` k ) = B ) |
| 9 | fveq2 | |- ( k = K -> ( le ` k ) = ( le ` K ) ) |
|
| 10 | 9 2 | eqtr4di | |- ( k = K -> ( le ` k ) = .<_ ) |
| 11 | 10 | breqd | |- ( k = K -> ( p ( le ` k ) x <-> p .<_ x ) ) |
| 12 | 11 | notbid | |- ( k = K -> ( -. p ( le ` k ) x <-> -. p .<_ x ) ) |
| 13 | eqidd | |- ( k = K -> p = p ) |
|
| 14 | fveq2 | |- ( k = K -> ( join ` k ) = ( join ` K ) ) |
|
| 15 | 14 3 | eqtr4di | |- ( k = K -> ( join ` k ) = .\/ ) |
| 16 | 15 | oveqd | |- ( k = K -> ( x ( join ` k ) q ) = ( x .\/ q ) ) |
| 17 | 13 10 16 | breq123d | |- ( k = K -> ( p ( le ` k ) ( x ( join ` k ) q ) <-> p .<_ ( x .\/ q ) ) ) |
| 18 | 12 17 | anbi12d | |- ( k = K -> ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) <-> ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) ) ) |
| 19 | eqidd | |- ( k = K -> q = q ) |
|
| 20 | 15 | oveqd | |- ( k = K -> ( x ( join ` k ) p ) = ( x .\/ p ) ) |
| 21 | 19 10 20 | breq123d | |- ( k = K -> ( q ( le ` k ) ( x ( join ` k ) p ) <-> q .<_ ( x .\/ p ) ) ) |
| 22 | 18 21 | imbi12d | |- ( k = K -> ( ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 23 | 8 22 | raleqbidv | |- ( k = K -> ( A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 24 | 6 23 | raleqbidv | |- ( k = K -> ( A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 25 | 6 24 | raleqbidv | |- ( k = K -> ( A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 26 | df-cvlat | |- CvLat = { k e. AtLat | A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) } |
|
| 27 | 25 26 | elrab2 | |- ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |