This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscvlat2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| iscvlat2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| iscvlat2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| iscvlat2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| iscvlat2.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| iscvlat2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | iscvlat2N | ⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvlat2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | iscvlat2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | iscvlat2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | iscvlat2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | iscvlat2.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 6 | iscvlat2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 7 | 1 2 3 6 | iscvlat | ⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 8 | simpll | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) | |
| 9 | simplrl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑝 ∈ 𝐴 ) | |
| 10 | simpr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 11 | 1 2 4 5 6 | atnle | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑥 ↔ ( 𝑝 ∧ 𝑥 ) = 0 ) ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑥 ↔ ( 𝑝 ∧ 𝑥 ) = 0 ) ) |
| 13 | 12 | anbi1d | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ↔ ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ) ) |
| 14 | 13 | imbi1d | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ↔ ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 15 | 14 | ralbidva | ⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 16 | 15 | 2ralbidva | ⊢ ( 𝐾 ∈ AtLat → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 17 | 16 | pm5.32i | ⊢ ( ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
| 18 | 7 17 | bitri | ⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |