This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cvlat | ⊢ CvLat = { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clc | ⊢ CvLat | |
| 1 | vk | ⊢ 𝑘 | |
| 2 | cal | ⊢ AtLat | |
| 3 | va | ⊢ 𝑎 | |
| 4 | catm | ⊢ Atoms | |
| 5 | 1 | cv | ⊢ 𝑘 |
| 6 | 5 4 | cfv | ⊢ ( Atoms ‘ 𝑘 ) |
| 7 | vb | ⊢ 𝑏 | |
| 8 | vc | ⊢ 𝑐 | |
| 9 | cbs | ⊢ Base | |
| 10 | 5 9 | cfv | ⊢ ( Base ‘ 𝑘 ) |
| 11 | 3 | cv | ⊢ 𝑎 |
| 12 | cple | ⊢ le | |
| 13 | 5 12 | cfv | ⊢ ( le ‘ 𝑘 ) |
| 14 | 8 | cv | ⊢ 𝑐 |
| 15 | 11 14 13 | wbr | ⊢ 𝑎 ( le ‘ 𝑘 ) 𝑐 |
| 16 | 15 | wn | ⊢ ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 |
| 17 | cjn | ⊢ join | |
| 18 | 5 17 | cfv | ⊢ ( join ‘ 𝑘 ) |
| 19 | 7 | cv | ⊢ 𝑏 |
| 20 | 14 19 18 | co | ⊢ ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) |
| 21 | 11 20 13 | wbr | ⊢ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) |
| 22 | 16 21 | wa | ⊢ ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) |
| 23 | 14 11 18 | co | ⊢ ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) |
| 24 | 19 23 13 | wbr | ⊢ 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) |
| 25 | 22 24 | wi | ⊢ ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
| 26 | 25 8 10 | wral | ⊢ ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
| 27 | 26 7 6 | wral | ⊢ ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
| 28 | 27 3 6 | wral | ⊢ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
| 29 | 28 1 2 | crab | ⊢ { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) } |
| 30 | 0 29 | wceq | ⊢ CvLat = { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) } |