This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | ||
| cssss.c | |||
| ocvcss.o | |||
| Assertion | iscss2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssss.v | ||
| 2 | cssss.c | ||
| 3 | ocvcss.o | ||
| 4 | 3 2 | iscss | |
| 5 | 4 | adantr | |
| 6 | 1 3 | ocvocv | |
| 7 | eqss | ||
| 8 | 7 | baib | |
| 9 | 6 8 | syl | |
| 10 | 5 9 | bitrd |