This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | iscss | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 2 | cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | 1 2 | cssval | ⊢ ( 𝑊 ∈ 𝑋 → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| 4 | 3 | eleq2d | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑆 ∈ 𝐶 ↔ 𝑆 ∈ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) ) |
| 5 | id | ⊢ ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) | |
| 6 | fvex | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ V | |
| 7 | 5 6 | eqeltrdi | ⊢ ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑆 ∈ V ) |
| 8 | id | ⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) | |
| 9 | 2fveq3 | ⊢ ( 𝑠 = 𝑆 → ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 11 | 7 10 | elab3 | ⊢ ( 𝑆 ∈ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 12 | 4 11 | bitrdi | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |