This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssval.o | |- ._|_ = ( ocv ` W ) |
|
| cssval.c | |- C = ( ClSubSp ` W ) |
||
| Assertion | iscss | |- ( W e. X -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssval.o | |- ._|_ = ( ocv ` W ) |
|
| 2 | cssval.c | |- C = ( ClSubSp ` W ) |
|
| 3 | 1 2 | cssval | |- ( W e. X -> C = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) |
| 4 | 3 | eleq2d | |- ( W e. X -> ( S e. C <-> S e. { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) ) |
| 5 | id | |- ( S = ( ._|_ ` ( ._|_ ` S ) ) -> S = ( ._|_ ` ( ._|_ ` S ) ) ) |
|
| 6 | fvex | |- ( ._|_ ` ( ._|_ ` S ) ) e. _V |
|
| 7 | 5 6 | eqeltrdi | |- ( S = ( ._|_ ` ( ._|_ ` S ) ) -> S e. _V ) |
| 8 | id | |- ( s = S -> s = S ) |
|
| 9 | 2fveq3 | |- ( s = S -> ( ._|_ ` ( ._|_ ` s ) ) = ( ._|_ ` ( ._|_ ` S ) ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( s = S -> ( s = ( ._|_ ` ( ._|_ ` s ) ) <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 11 | 7 10 | elab3 | |- ( S e. { s | s = ( ._|_ ` ( ._|_ ` s ) ) } <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) |
| 12 | 4 11 | bitrdi | |- ( W e. X -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) ) |