This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcl.b | |- B = ( Base ` R ) |
|
| ringcl.t | |- .x. = ( .r ` R ) |
||
| Assertion | iscrng2 | |- ( R e. CRing <-> ( R e. Ring /\ A. x e. B A. y e. B ( x .x. y ) = ( y .x. x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcl.b | |- B = ( Base ` R ) |
|
| 2 | ringcl.t | |- .x. = ( .r ` R ) |
|
| 3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 4 | 3 | iscrng | |- ( R e. CRing <-> ( R e. Ring /\ ( mulGrp ` R ) e. CMnd ) ) |
| 5 | 3 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 6 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 7 | 3 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 8 | 6 7 | iscmn | |- ( ( mulGrp ` R ) e. CMnd <-> ( ( mulGrp ` R ) e. Mnd /\ A. x e. B A. y e. B ( x .x. y ) = ( y .x. x ) ) ) |
| 9 | 8 | baib | |- ( ( mulGrp ` R ) e. Mnd -> ( ( mulGrp ` R ) e. CMnd <-> A. x e. B A. y e. B ( x .x. y ) = ( y .x. x ) ) ) |
| 10 | 5 9 | syl | |- ( R e. Ring -> ( ( mulGrp ` R ) e. CMnd <-> A. x e. B A. y e. B ( x .x. y ) = ( y .x. x ) ) ) |
| 11 | 10 | pm5.32i | |- ( ( R e. Ring /\ ( mulGrp ` R ) e. CMnd ) <-> ( R e. Ring /\ A. x e. B A. y e. B ( x .x. y ) = ( y .x. x ) ) ) |
| 12 | 4 11 | bitri | |- ( R e. CRing <-> ( R e. Ring /\ A. x e. B A. y e. B ( x .x. y ) = ( y .x. x ) ) ) |