This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcl.b | ||
| ringcl.t | |||
| Assertion | iscrng2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcl.b | ||
| 2 | ringcl.t | ||
| 3 | eqid | ||
| 4 | 3 | iscrng | |
| 5 | 3 | ringmgp | |
| 6 | 3 1 | mgpbas | |
| 7 | 3 2 | mgpplusg | |
| 8 | 6 7 | iscmn | |
| 9 | 8 | baib | |
| 10 | 5 9 | syl | |
| 11 | 10 | pm5.32i | |
| 12 | 4 11 | bitri |