This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of CCfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cph | ⊢ ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccph | ⊢ ℂPreHil | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cphl | ⊢ PreHil | |
| 3 | cnlm | ⊢ NrmMod | |
| 4 | 2 3 | cin | ⊢ ( PreHil ∩ NrmMod ) |
| 5 | csca | ⊢ Scalar | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 8 | vf | ⊢ 𝑓 | |
| 9 | cbs | ⊢ Base | |
| 10 | 8 | cv | ⊢ 𝑓 |
| 11 | 10 9 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 12 | vk | ⊢ 𝑘 | |
| 13 | ccnfld | ⊢ ℂfld | |
| 14 | cress | ⊢ ↾s | |
| 15 | 12 | cv | ⊢ 𝑘 |
| 16 | 13 15 14 | co | ⊢ ( ℂfld ↾s 𝑘 ) |
| 17 | 10 16 | wceq | ⊢ 𝑓 = ( ℂfld ↾s 𝑘 ) |
| 18 | csqrt | ⊢ √ | |
| 19 | cc0 | ⊢ 0 | |
| 20 | cico | ⊢ [,) | |
| 21 | cpnf | ⊢ +∞ | |
| 22 | 19 21 20 | co | ⊢ ( 0 [,) +∞ ) |
| 23 | 15 22 | cin | ⊢ ( 𝑘 ∩ ( 0 [,) +∞ ) ) |
| 24 | 18 23 | cima | ⊢ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) |
| 25 | 24 15 | wss | ⊢ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 |
| 26 | cnm | ⊢ norm | |
| 27 | 6 26 | cfv | ⊢ ( norm ‘ 𝑤 ) |
| 28 | vx | ⊢ 𝑥 | |
| 29 | 6 9 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 30 | 28 | cv | ⊢ 𝑥 |
| 31 | cip | ⊢ ·𝑖 | |
| 32 | 6 31 | cfv | ⊢ ( ·𝑖 ‘ 𝑤 ) |
| 33 | 30 30 32 | co | ⊢ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) |
| 34 | 33 18 | cfv | ⊢ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) |
| 35 | 28 29 34 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
| 36 | 27 35 | wceq | ⊢ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
| 37 | 17 25 36 | w3a | ⊢ ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
| 38 | 37 12 11 | wsbc | ⊢ [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
| 39 | 38 8 7 | wsbc | ⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
| 40 | 39 1 4 | crab | ⊢ { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |
| 41 | 0 40 | wceq | ⊢ ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |