This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all functions from topology J to topology K that are continuous at a point P . (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnpfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 CnP 𝐾 ) = ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ) | |
| 2 | 1 | fveq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = ( ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ‘ 𝑃 ) ) |
| 3 | fveq2 | ⊢ ( 𝑣 = 𝑃 → ( 𝑓 ‘ 𝑣 ) = ( 𝑓 ‘ 𝑃 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑣 = 𝑃 → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 ↔ ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 ) ) |
| 5 | eleq1 | ⊢ ( 𝑣 = 𝑃 → ( 𝑣 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑣 = 𝑃 → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑣 = 𝑃 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 8 | 4 7 | imbi12d | ⊢ ( 𝑣 = 𝑃 → ( ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑣 = 𝑃 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 10 | 9 | rabbidv | ⊢ ( 𝑣 = 𝑃 → { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
| 11 | eqid | ⊢ ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) = ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) | |
| 12 | ovex | ⊢ ( 𝑌 ↑m 𝑋 ) ∈ V | |
| 13 | 12 | rabex | ⊢ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ∈ V |
| 14 | 10 11 13 | fvmpt | ⊢ ( 𝑃 ∈ 𝑋 → ( ( 𝑣 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑣 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
| 15 | 2 14 | sylan9eq | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
| 16 | 15 | 3impa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |