This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cmn | ⊢ CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccmn | ⊢ CMnd | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cmnd | ⊢ Mnd | |
| 3 | va | ⊢ 𝑎 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑔 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 7 | vb | ⊢ 𝑏 | |
| 8 | 3 | cv | ⊢ 𝑎 |
| 9 | cplusg | ⊢ +g | |
| 10 | 5 9 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 11 | 7 | cv | ⊢ 𝑏 |
| 12 | 8 11 10 | co | ⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) |
| 13 | 11 8 10 | co | ⊢ ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 14 | 12 13 | wceq | ⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 15 | 14 7 6 | wral | ⊢ ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 16 | 15 3 6 | wral | ⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 17 | 16 1 2 | crab | ⊢ { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |
| 18 | 0 17 | wceq | ⊢ CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |