This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Cauchy filter bases on a uniform space. A Cauchy filter base is a filter base on the set such that for every entourage v , there is an element a of the filter "small enough in v " i.e. such that every pair { x , y } of points in a is related by v ". Definition 2 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cfilu | ⊢ CauFilu = ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑢 ) ∣ ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccfilu | ⊢ CauFilu | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cust | ⊢ UnifOn | |
| 3 | 2 | crn | ⊢ ran UnifOn |
| 4 | 3 | cuni | ⊢ ∪ ran UnifOn |
| 5 | vf | ⊢ 𝑓 | |
| 6 | cfbas | ⊢ fBas | |
| 7 | 1 | cv | ⊢ 𝑢 |
| 8 | 7 | cuni | ⊢ ∪ 𝑢 |
| 9 | 8 | cdm | ⊢ dom ∪ 𝑢 |
| 10 | 9 6 | cfv | ⊢ ( fBas ‘ dom ∪ 𝑢 ) |
| 11 | vv | ⊢ 𝑣 | |
| 12 | va | ⊢ 𝑎 | |
| 13 | 5 | cv | ⊢ 𝑓 |
| 14 | 12 | cv | ⊢ 𝑎 |
| 15 | 14 14 | cxp | ⊢ ( 𝑎 × 𝑎 ) |
| 16 | 11 | cv | ⊢ 𝑣 |
| 17 | 15 16 | wss | ⊢ ( 𝑎 × 𝑎 ) ⊆ 𝑣 |
| 18 | 17 12 13 | wrex | ⊢ ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 |
| 19 | 18 11 7 | wral | ⊢ ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 |
| 20 | 19 5 10 | crab | ⊢ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑢 ) ∣ ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } |
| 21 | 1 4 20 | cmpt | ⊢ ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑢 ) ∣ ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) |
| 22 | 0 21 | wceq | ⊢ CauFilu = ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑢 ) ∣ ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) |