This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bn | ⊢ Ban = { 𝑤 ∈ ( NrmVec ∩ CMetSp ) ∣ ( Scalar ‘ 𝑤 ) ∈ CMetSp } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cbn | ⊢ Ban | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cnvc | ⊢ NrmVec | |
| 3 | ccms | ⊢ CMetSp | |
| 4 | 2 3 | cin | ⊢ ( NrmVec ∩ CMetSp ) |
| 5 | csca | ⊢ Scalar | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 8 | 7 3 | wcel | ⊢ ( Scalar ‘ 𝑤 ) ∈ CMetSp |
| 9 | 8 1 4 | crab | ⊢ { 𝑤 ∈ ( NrmVec ∩ CMetSp ) ∣ ( Scalar ‘ 𝑤 ) ∈ CMetSp } |
| 10 | 0 9 | wceq | ⊢ Ban = { 𝑤 ∈ ( NrmVec ∩ CMetSp ) ∣ ( Scalar ‘ 𝑤 ) ∈ CMetSp } |