This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate "the set B is a basis for a topology". Definition of basis in Munkres p. 78. (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isbasis3g | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasis2g | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 2 | elssuni | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ 𝐵 ) | |
| 3 | 2 | rgen | ⊢ ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 |
| 4 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) | |
| 5 | 4 | biimpi | ⊢ ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) |
| 6 | 5 | rgen | ⊢ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 |
| 7 | 3 6 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) |
| 8 | 7 | biantrur | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 9 | df-3an | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ↔ ( ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 10 | 8 9 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 11 | 1 10 | bitrdi | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ ∪ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |