This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isatlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isatlat.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| isatlat.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| isatlat.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| isatlat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | isatl | ⊢ ( 𝐾 ∈ AtLat ↔ ( 𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isatlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isatlat.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 3 | isatlat.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 4 | isatlat.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 5 | isatlat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( glb ‘ 𝑘 ) = ( glb ‘ 𝐾 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( glb ‘ 𝑘 ) = 𝐺 ) |
| 10 | 9 | dmeqd | ⊢ ( 𝑘 = 𝐾 → dom ( glb ‘ 𝑘 ) = dom 𝐺 ) |
| 11 | 7 10 | eleq12d | ⊢ ( 𝑘 = 𝐾 → ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ↔ 𝐵 ∈ dom 𝐺 ) ) |
| 12 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( 0. ‘ 𝑘 ) = ( 0. ‘ 𝐾 ) ) | |
| 13 | 12 4 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( 0. ‘ 𝑘 ) = 0 ) |
| 14 | 13 | neeq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ≠ ( 0. ‘ 𝑘 ) ↔ 𝑥 ≠ 0 ) ) |
| 15 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 16 | 15 5 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 17 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 18 | 17 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 19 | 18 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑦 ( le ‘ 𝑘 ) 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) |
| 20 | 16 19 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑦 ∈ ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 21 | 14 20 | imbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑦 ∈ ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 ) ↔ ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) |
| 22 | 7 21 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑦 ∈ ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) |
| 23 | 11 22 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑦 ∈ ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 ) ) ↔ ( 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) ) |
| 24 | df-atl | ⊢ AtLat = { 𝑘 ∈ Lat ∣ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑦 ∈ ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 ) ) } | |
| 25 | 23 24 | elrab2 | ⊢ ( 𝐾 ∈ AtLat ↔ ( 𝐾 ∈ Lat ∧ ( 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) ) |
| 26 | 3anass | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ↔ ( 𝐾 ∈ Lat ∧ ( 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) ) | |
| 27 | 25 26 | bitr4i | ⊢ ( 𝐾 ∈ AtLat ↔ ( 𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) |