This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isatlat.b | |- B = ( Base ` K ) |
|
| isatlat.g | |- G = ( glb ` K ) |
||
| isatlat.l | |- .<_ = ( le ` K ) |
||
| isatlat.z | |- .0. = ( 0. ` K ) |
||
| isatlat.a | |- A = ( Atoms ` K ) |
||
| Assertion | isatl | |- ( K e. AtLat <-> ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isatlat.b | |- B = ( Base ` K ) |
|
| 2 | isatlat.g | |- G = ( glb ` K ) |
|
| 3 | isatlat.l | |- .<_ = ( le ` K ) |
|
| 4 | isatlat.z | |- .0. = ( 0. ` K ) |
|
| 5 | isatlat.a | |- A = ( Atoms ` K ) |
|
| 6 | fveq2 | |- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( k = K -> ( Base ` k ) = B ) |
| 8 | fveq2 | |- ( k = K -> ( glb ` k ) = ( glb ` K ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( k = K -> ( glb ` k ) = G ) |
| 10 | 9 | dmeqd | |- ( k = K -> dom ( glb ` k ) = dom G ) |
| 11 | 7 10 | eleq12d | |- ( k = K -> ( ( Base ` k ) e. dom ( glb ` k ) <-> B e. dom G ) ) |
| 12 | fveq2 | |- ( k = K -> ( 0. ` k ) = ( 0. ` K ) ) |
|
| 13 | 12 4 | eqtr4di | |- ( k = K -> ( 0. ` k ) = .0. ) |
| 14 | 13 | neeq2d | |- ( k = K -> ( x =/= ( 0. ` k ) <-> x =/= .0. ) ) |
| 15 | fveq2 | |- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
|
| 16 | 15 5 | eqtr4di | |- ( k = K -> ( Atoms ` k ) = A ) |
| 17 | fveq2 | |- ( k = K -> ( le ` k ) = ( le ` K ) ) |
|
| 18 | 17 3 | eqtr4di | |- ( k = K -> ( le ` k ) = .<_ ) |
| 19 | 18 | breqd | |- ( k = K -> ( y ( le ` k ) x <-> y .<_ x ) ) |
| 20 | 16 19 | rexeqbidv | |- ( k = K -> ( E. y e. ( Atoms ` k ) y ( le ` k ) x <-> E. y e. A y .<_ x ) ) |
| 21 | 14 20 | imbi12d | |- ( k = K -> ( ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) <-> ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |
| 22 | 7 21 | raleqbidv | |- ( k = K -> ( A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) <-> A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |
| 23 | 11 22 | anbi12d | |- ( k = K -> ( ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) ) <-> ( B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) ) |
| 24 | df-atl | |- AtLat = { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) ) } |
|
| 25 | 23 24 | elrab2 | |- ( K e. AtLat <-> ( K e. Lat /\ ( B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) ) |
| 26 | 3anass | |- ( ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) <-> ( K e. Lat /\ ( B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) ) |
|
| 27 | 25 26 | bitr4i | |- ( K e. AtLat <-> ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |