This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-atl | ⊢ AtLat = { 𝑘 ∈ Lat ∣ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cal | ⊢ AtLat | |
| 1 | vk | ⊢ 𝑘 | |
| 2 | clat | ⊢ Lat | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑘 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑘 ) |
| 6 | cglb | ⊢ glb | |
| 7 | 4 6 | cfv | ⊢ ( glb ‘ 𝑘 ) |
| 8 | 7 | cdm | ⊢ dom ( glb ‘ 𝑘 ) |
| 9 | 5 8 | wcel | ⊢ ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) |
| 10 | vx | ⊢ 𝑥 | |
| 11 | 10 | cv | ⊢ 𝑥 |
| 12 | cp0 | ⊢ 0. | |
| 13 | 4 12 | cfv | ⊢ ( 0. ‘ 𝑘 ) |
| 14 | 11 13 | wne | ⊢ 𝑥 ≠ ( 0. ‘ 𝑘 ) |
| 15 | vp | ⊢ 𝑝 | |
| 16 | catm | ⊢ Atoms | |
| 17 | 4 16 | cfv | ⊢ ( Atoms ‘ 𝑘 ) |
| 18 | 15 | cv | ⊢ 𝑝 |
| 19 | cple | ⊢ le | |
| 20 | 4 19 | cfv | ⊢ ( le ‘ 𝑘 ) |
| 21 | 18 11 20 | wbr | ⊢ 𝑝 ( le ‘ 𝑘 ) 𝑥 |
| 22 | 21 15 17 | wrex | ⊢ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 |
| 23 | 14 22 | wi | ⊢ ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) |
| 24 | 23 10 5 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) |
| 25 | 9 24 | wa | ⊢ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) ) |
| 26 | 25 1 2 | crab | ⊢ { 𝑘 ∈ Lat ∣ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) ) } |
| 27 | 0 26 | wceq | ⊢ AtLat = { 𝑘 ∈ Lat ∣ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) ) } |