This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by ph ( x , y ) i.e. the class ( { <. x , y >. | ph } " A ) . If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006) (Proof shortened by Mario Carneiro, 4-Dec-2016) (Proof shortened by SN, 19-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isarep1 | ⊢ ( 𝑏 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑏 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑏 ∈ V | |
| 2 | 1 | elima | ⊢ ( 𝑏 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑏 ) |
| 3 | df-br | ⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑏 ↔ 〈 𝑧 , 𝑏 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) | |
| 4 | vopelopabsb | ⊢ ( 〈 𝑧 , 𝑏 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) | |
| 5 | 3 4 | bitri | ⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑏 ↔ [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) |
| 6 | 5 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑏 ↔ ∃ 𝑧 ∈ 𝐴 [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) |
| 7 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 | |
| 8 | nfv | ⊢ Ⅎ 𝑧 [ 𝑏 / 𝑦 ] 𝜑 | |
| 9 | sbequ12r | ⊢ ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) | |
| 10 | 7 8 9 | cbvrexw | ⊢ ( ∃ 𝑧 ∈ 𝐴 [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑏 / 𝑦 ] 𝜑 ) |
| 11 | 2 6 10 | 3bitri | ⊢ ( 𝑏 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑏 / 𝑦 ] 𝜑 ) |