This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by ph ( x , y ) i.e. the class ( { <. x , y >. | ph } " A ) . If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006) (Proof shortened by Mario Carneiro, 4-Dec-2016) (Proof shortened by SN, 19-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isarep1 | |- ( b e. ( { <. x , y >. | ph } " A ) <-> E. x e. A [ b / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- b e. _V |
|
| 2 | 1 | elima | |- ( b e. ( { <. x , y >. | ph } " A ) <-> E. z e. A z { <. x , y >. | ph } b ) |
| 3 | df-br | |- ( z { <. x , y >. | ph } b <-> <. z , b >. e. { <. x , y >. | ph } ) |
|
| 4 | vopelopabsb | |- ( <. z , b >. e. { <. x , y >. | ph } <-> [ z / x ] [ b / y ] ph ) |
|
| 5 | 3 4 | bitri | |- ( z { <. x , y >. | ph } b <-> [ z / x ] [ b / y ] ph ) |
| 6 | 5 | rexbii | |- ( E. z e. A z { <. x , y >. | ph } b <-> E. z e. A [ z / x ] [ b / y ] ph ) |
| 7 | nfs1v | |- F/ x [ z / x ] [ b / y ] ph |
|
| 8 | nfv | |- F/ z [ b / y ] ph |
|
| 9 | sbequ12r | |- ( z = x -> ( [ z / x ] [ b / y ] ph <-> [ b / y ] ph ) ) |
|
| 10 | 7 8 9 | cbvrexw | |- ( E. z e. A [ z / x ] [ b / y ] ph <-> E. x e. A [ b / y ] ph ) |
| 11 | 2 6 10 | 3bitri | |- ( b e. ( { <. x , y >. | ph } " A ) <-> E. x e. A [ b / y ] ph ) |