This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex . (Contributed by NM, 26-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isarep2.1 | ⊢ 𝐴 ∈ V | |
| isarep2.2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( ( 𝜑 ∧ [ 𝑧 / 𝑦 ] 𝜑 ) → 𝑦 = 𝑧 ) | ||
| Assertion | isarep2 | ⊢ ∃ 𝑤 𝑤 = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isarep2.1 | ⊢ 𝐴 ∈ V | |
| 2 | isarep2.2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ( ( 𝜑 ∧ [ 𝑧 / 𝑦 ] 𝜑 ) → 𝑦 = 𝑧 ) | |
| 3 | resima | ⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↾ 𝐴 ) “ 𝐴 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) | |
| 4 | resopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 5 | 4 | imaeq1i | ⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↾ 𝐴 ) “ 𝐴 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } “ 𝐴 ) |
| 6 | 3 5 | eqtr3i | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } “ 𝐴 ) |
| 7 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 8 | 2 | rspec | ⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( ( 𝜑 ∧ [ 𝑧 / 𝑦 ] 𝜑 ) → 𝑦 = 𝑧 ) ) |
| 9 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 10 | 9 | mo3 | ⊢ ( ∃* 𝑦 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝜑 ∧ [ 𝑧 / 𝑦 ] 𝜑 ) → 𝑦 = 𝑧 ) ) |
| 11 | 8 10 | sylibr | ⊢ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) |
| 12 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) ) | |
| 13 | 11 12 | mpbir | ⊢ ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 14 | 7 13 | mpgbir | ⊢ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
| 15 | 1 | funimaex | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } “ 𝐴 ) ∈ V ) |
| 16 | 14 15 | ax-mp | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } “ 𝐴 ) ∈ V |
| 17 | 6 16 | eqeltri | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) ∈ V |
| 18 | 17 | isseti | ⊢ ∃ 𝑤 𝑤 = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } “ 𝐴 ) |