This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fpwipodrs | ⊢ ( 𝐴 ∈ 𝑉 → ( toInc ‘ ( 𝒫 𝐴 ∩ Fin ) ) ∈ Dirset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 2 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 4 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 | |
| 5 | 0fi | ⊢ ∅ ∈ Fin | |
| 6 | 4 5 | elini | ⊢ ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) |
| 7 | ne0i | ⊢ ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) → ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ ) |
| 9 | elin | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin ) ) | |
| 10 | elin | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin ) ) | |
| 11 | pwuncl | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐴 ) | |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 13 | unfi | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝑥 ∪ 𝑦 ) ∈ Fin ) | |
| 14 | 13 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin ) ) → ( 𝑥 ∪ 𝑦 ) ∈ Fin ) |
| 15 | 12 14 | elind | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 16 | 9 10 15 | syl2anb | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 17 | ssid | ⊢ ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) | |
| 18 | sseq2 | ⊢ ( 𝑧 = ( 𝑥 ∪ 𝑦 ) → ( ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) ) ) | |
| 19 | 18 | rspcev | ⊢ ( ( ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) |
| 20 | 16 17 19 | sylancl | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) |
| 21 | 20 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 |
| 22 | 21 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) |
| 23 | isipodrs | ⊢ ( ( toInc ‘ ( 𝒫 𝐴 ∩ Fin ) ) ∈ Dirset ↔ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V ∧ ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) ) | |
| 24 | 3 8 22 23 | syl3anbrc | ⊢ ( 𝐴 ∈ 𝑉 → ( toInc ‘ ( 𝒫 𝐴 ∩ Fin ) ) ∈ Dirset ) |