This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | acsdrscl | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | fveq2 | ⊢ ( 𝑡 = 𝑌 → ( toInc ‘ 𝑡 ) = ( toInc ‘ 𝑌 ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑡 = 𝑌 → ( ( toInc ‘ 𝑡 ) ∈ Dirset ↔ ( toInc ‘ 𝑌 ) ∈ Dirset ) ) |
| 4 | unieq | ⊢ ( 𝑡 = 𝑌 → ∪ 𝑡 = ∪ 𝑌 ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑡 = 𝑌 → ( 𝐹 ‘ ∪ 𝑡 ) = ( 𝐹 ‘ ∪ 𝑌 ) ) |
| 6 | imaeq2 | ⊢ ( 𝑡 = 𝑌 → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ 𝑌 ) ) | |
| 7 | 6 | unieqd | ⊢ ( 𝑡 = 𝑌 → ∪ ( 𝐹 “ 𝑡 ) = ∪ ( 𝐹 “ 𝑌 ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑡 = 𝑌 → ( ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ↔ ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) ) |
| 9 | 3 8 | imbi12d | ⊢ ( 𝑡 = 𝑌 → ( ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ↔ ( ( toInc ‘ 𝑌 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) ) ) |
| 10 | isacs3lem | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ) | |
| 11 | 1 | isacs4lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
| 12 | 10 11 | syl | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
| 13 | 12 | simprd | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) |
| 15 | elfvdm | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝑋 ∈ dom ACS ) | |
| 16 | pwexg | ⊢ ( 𝑋 ∈ dom ACS → 𝒫 𝑋 ∈ V ) | |
| 17 | elpw2g | ⊢ ( 𝒫 𝑋 ∈ V → ( 𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋 ) ) | |
| 18 | 15 16 17 | 3syl | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋 ) ) |
| 19 | 18 | biimpar | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ) → 𝑌 ∈ 𝒫 𝒫 𝑋 ) |
| 20 | 9 14 19 | rspcdva | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ) → ( ( toInc ‘ 𝑌 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) ) |
| 21 | 20 | 3impia | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) |