This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ||
| irredneg.n | |||
| irrednegb.b | |||
| Assertion | irrednegb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ||
| 2 | irredneg.n | ||
| 3 | irrednegb.b | ||
| 4 | 1 2 | irredneg | |
| 5 | 4 | adantlr | |
| 6 | ringgrp | ||
| 7 | 3 2 | grpinvinv | |
| 8 | 6 7 | sylan | |
| 9 | 8 | adantr | |
| 10 | 1 2 | irredneg | |
| 11 | 10 | adantlr | |
| 12 | 9 11 | eqeltrrd | |
| 13 | 5 12 | impbida |