This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dip0r.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| dip0r.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| dip0r.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | ipz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dip0r.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | dip0r.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | dip0r.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 5 | 1 4 3 | ipidsq | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) ) |
| 6 | 5 | eqeq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
| 7 | 1 4 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ ) |
| 9 | sqeq0 | ⊢ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ → ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) = 0 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) = 0 ) ) |
| 11 | 1 2 4 | nvz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |
| 12 | 6 10 11 | 3bitrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |