This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dip0r.1 | |- X = ( BaseSet ` U ) |
|
| dip0r.5 | |- Z = ( 0vec ` U ) |
||
| dip0r.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipz | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( A P A ) = 0 <-> A = Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dip0r.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dip0r.5 | |- Z = ( 0vec ` U ) |
|
| 3 | dip0r.7 | |- P = ( .iOLD ` U ) |
|
| 4 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 5 | 1 4 3 | ipidsq | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( ( normCV ` U ) ` A ) ^ 2 ) ) |
| 6 | 5 | eqeq1d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( A P A ) = 0 <-> ( ( ( normCV ` U ) ` A ) ^ 2 ) = 0 ) ) |
| 7 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` A ) e. RR ) |
| 8 | 7 | recnd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` A ) e. CC ) |
| 9 | sqeq0 | |- ( ( ( normCV ` U ) ` A ) e. CC -> ( ( ( ( normCV ` U ) ` A ) ^ 2 ) = 0 <-> ( ( normCV ` U ) ` A ) = 0 ) ) |
|
| 10 | 8 9 | syl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` A ) ^ 2 ) = 0 <-> ( ( normCV ` U ) ` A ) = 0 ) ) |
| 11 | 1 2 4 | nvz | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` A ) = 0 <-> A = Z ) ) |
| 12 | 6 10 11 | 3bitrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( A P A ) = 0 <-> A = Z ) ) |