This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolt.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipolt.l | ⊢ < = ( lt ‘ 𝐼 ) | ||
| Assertion | ipolt | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ 𝑋 ⊊ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolt.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipolt.l | ⊢ < = ( lt ‘ 𝐼 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 4 | 1 3 | ipole | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ↔ 𝑋 ⊆ 𝑌 ) ) |
| 5 | 4 | anbi1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 6 | 1 | fvexi | ⊢ 𝐼 ∈ V |
| 7 | 3 2 | pltval | ⊢ ( ( 𝐼 ∈ V ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 8 | 6 7 | mp3an1 | ⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 10 | df-pss | ⊢ ( 𝑋 ⊊ 𝑌 ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) | |
| 11 | 10 | a1i | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ⊊ 𝑌 ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 12 | 5 9 11 | 3bitr4d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ 𝑋 ⊊ 𝑌 ) ) |