This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolt.i | |- I = ( toInc ` F ) |
|
| ipolt.l | |- .< = ( lt ` I ) |
||
| Assertion | ipolt | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X .< Y <-> X C. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolt.i | |- I = ( toInc ` F ) |
|
| 2 | ipolt.l | |- .< = ( lt ` I ) |
|
| 3 | eqid | |- ( le ` I ) = ( le ` I ) |
|
| 4 | 1 3 | ipole | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X ( le ` I ) Y <-> X C_ Y ) ) |
| 5 | 4 | anbi1d | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( ( X ( le ` I ) Y /\ X =/= Y ) <-> ( X C_ Y /\ X =/= Y ) ) ) |
| 6 | 1 | fvexi | |- I e. _V |
| 7 | 3 2 | pltval | |- ( ( I e. _V /\ X e. F /\ Y e. F ) -> ( X .< Y <-> ( X ( le ` I ) Y /\ X =/= Y ) ) ) |
| 8 | 6 7 | mp3an1 | |- ( ( X e. F /\ Y e. F ) -> ( X .< Y <-> ( X ( le ` I ) Y /\ X =/= Y ) ) ) |
| 9 | 8 | 3adant1 | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X .< Y <-> ( X ( le ` I ) Y /\ X =/= Y ) ) ) |
| 10 | df-pss | |- ( X C. Y <-> ( X C_ Y /\ X =/= Y ) ) |
|
| 11 | 10 | a1i | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X C. Y <-> ( X C_ Y /\ X =/= Y ) ) ) |
| 12 | 5 9 11 | 3bitr4d | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X .< Y <-> X C. Y ) ) |