This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| phllmhm.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) | ||
| Assertion | phllmhm | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | phllmhm.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 8 | 3 1 2 5 6 7 | isphl | ⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑦 ∈ 𝑉 ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) ) ) |
| 9 | 8 | simp3bi | ⊢ ( 𝑊 ∈ PreHil → ∀ 𝑦 ∈ 𝑉 ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) ) |
| 10 | simp1 | ⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝑉 ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) → ∀ 𝑦 ∈ 𝑉 ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝑊 ∈ PreHil → ∀ 𝑦 ∈ 𝑉 ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 , 𝑦 ) = ( 𝑥 , 𝐴 ) ) | |
| 14 | 13 | mpteq2dv | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ) |
| 15 | 14 4 | eqtr4di | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) = 𝐺 ) |
| 16 | 15 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ↔ 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) ) |
| 17 | 16 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 18 | 12 17 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |