This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srngcl.i | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| srngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | srngnvl | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝑋 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcl.i | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| 2 | srngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | srngcl | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∗ ‘ 𝑋 ) ∈ 𝐵 ) |
| 4 | eqid | ⊢ ( *rf ‘ 𝑅 ) = ( *rf ‘ 𝑅 ) | |
| 5 | 2 1 4 | stafval | ⊢ ( ( ∗ ‘ 𝑋 ) ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) = ( ∗ ‘ ( ∗ ‘ 𝑋 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) = ( ∗ ‘ ( ∗ ‘ 𝑋 ) ) ) |
| 7 | 4 | srngcnv | ⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) |
| 9 | 8 | fveq1d | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 10 | 2 1 4 | stafval | ⊢ ( 𝑋 ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) ) |
| 13 | 4 2 | srngf1o | ⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 14 | f1ocnvfv1 | ⊢ ( ( ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = 𝑋 ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 16 | 9 12 15 | 3eqtr3d | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) = 𝑋 ) |
| 17 | 6 16 | eqtr3d | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝑋 ) ) = 𝑋 ) |