This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ip0l.z | |- Z = ( 0g ` F ) |
||
| ip0l.o | |- .0. = ( 0g ` W ) |
||
| Assertion | ip0l | |- ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ip0l.z | |- Z = ( 0g ` F ) |
|
| 5 | ip0l.o | |- .0. = ( 0g ` W ) |
|
| 6 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 7 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 8 | 3 5 | grpidcl | |- ( W e. Grp -> .0. e. V ) |
| 9 | 6 7 8 | 3syl | |- ( W e. PreHil -> .0. e. V ) |
| 10 | 9 | adantr | |- ( ( W e. PreHil /\ A e. V ) -> .0. e. V ) |
| 11 | oveq1 | |- ( x = .0. -> ( x ., A ) = ( .0. ., A ) ) |
|
| 12 | eqid | |- ( x e. V |-> ( x ., A ) ) = ( x e. V |-> ( x ., A ) ) |
|
| 13 | ovex | |- ( .0. ., A ) e. _V |
|
| 14 | 11 12 13 | fvmpt | |- ( .0. e. V -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = ( .0. ., A ) ) |
| 15 | 10 14 | syl | |- ( ( W e. PreHil /\ A e. V ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = ( .0. ., A ) ) |
| 16 | 1 2 3 12 | phllmhm | |- ( ( W e. PreHil /\ A e. V ) -> ( x e. V |-> ( x ., A ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 17 | lmghm | |- ( ( x e. V |-> ( x ., A ) ) e. ( W LMHom ( ringLMod ` F ) ) -> ( x e. V |-> ( x ., A ) ) e. ( W GrpHom ( ringLMod ` F ) ) ) |
|
| 18 | rlm0 | |- ( 0g ` F ) = ( 0g ` ( ringLMod ` F ) ) |
|
| 19 | 4 18 | eqtri | |- Z = ( 0g ` ( ringLMod ` F ) ) |
| 20 | 5 19 | ghmid | |- ( ( x e. V |-> ( x ., A ) ) e. ( W GrpHom ( ringLMod ` F ) ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = Z ) |
| 21 | 16 17 20 | 3syl | |- ( ( W e. PreHil /\ A e. V ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = Z ) |
| 22 | 15 21 | eqtr3d | |- ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = Z ) |