This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition *14.01 in WhiteheadRussell p. 184. In Principia Mathematica, Russell and Whitehead define iota in terms of a function of ( iota x ph ) . Their definition differs in that a function of ( iota x ph ) evaluates to "false" when there isn't a single x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotasbc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 | ||
| 2 | iotaexeu | ||
| 3 | eueq | ||
| 4 | 2 3 | sylib | |
| 5 | eu6 | ||
| 6 | iotaval | ||
| 7 | 6 | eqcomd | |
| 8 | 7 | ancri | |
| 9 | 8 | eximi | |
| 10 | 5 9 | sylbi | |
| 11 | eupick | ||
| 12 | 4 10 11 | syl2anc | |
| 13 | 12 7 | impbid1 | |
| 14 | 13 | anbi1d | |
| 15 | 14 | exbidv | |
| 16 | 1 15 | bitrid |