This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition *14.01 in WhiteheadRussell p. 184. In Principia Mathematica, Russell and Whitehead define iota in terms of a function of ( iota x ph ) . Their definition differs in that a function of ( iota x ph ) evaluates to "false" when there isn't a single x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotasbc | |- ( E! x ph -> ( [. ( iota x ph ) / y ]. ps <-> E. y ( A. x ( ph <-> x = y ) /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 | |- ( [. ( iota x ph ) / y ]. ps <-> E. y ( y = ( iota x ph ) /\ ps ) ) |
|
| 2 | iotaexeu | |- ( E! x ph -> ( iota x ph ) e. _V ) |
|
| 3 | eueq | |- ( ( iota x ph ) e. _V <-> E! y y = ( iota x ph ) ) |
|
| 4 | 2 3 | sylib | |- ( E! x ph -> E! y y = ( iota x ph ) ) |
| 5 | eu6 | |- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |
|
| 6 | iotaval | |- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
|
| 7 | 6 | eqcomd | |- ( A. x ( ph <-> x = y ) -> y = ( iota x ph ) ) |
| 8 | 7 | ancri | |- ( A. x ( ph <-> x = y ) -> ( y = ( iota x ph ) /\ A. x ( ph <-> x = y ) ) ) |
| 9 | 8 | eximi | |- ( E. y A. x ( ph <-> x = y ) -> E. y ( y = ( iota x ph ) /\ A. x ( ph <-> x = y ) ) ) |
| 10 | 5 9 | sylbi | |- ( E! x ph -> E. y ( y = ( iota x ph ) /\ A. x ( ph <-> x = y ) ) ) |
| 11 | eupick | |- ( ( E! y y = ( iota x ph ) /\ E. y ( y = ( iota x ph ) /\ A. x ( ph <-> x = y ) ) ) -> ( y = ( iota x ph ) -> A. x ( ph <-> x = y ) ) ) |
|
| 12 | 4 10 11 | syl2anc | |- ( E! x ph -> ( y = ( iota x ph ) -> A. x ( ph <-> x = y ) ) ) |
| 13 | 12 7 | impbid1 | |- ( E! x ph -> ( y = ( iota x ph ) <-> A. x ( ph <-> x = y ) ) ) |
| 14 | 13 | anbi1d | |- ( E! x ph -> ( ( y = ( iota x ph ) /\ ps ) <-> ( A. x ( ph <-> x = y ) /\ ps ) ) ) |
| 15 | 14 | exbidv | |- ( E! x ph -> ( E. y ( y = ( iota x ph ) /\ ps ) <-> E. y ( A. x ( ph <-> x = y ) /\ ps ) ) ) |
| 16 | 1 15 | bitrid | |- ( E! x ph -> ( [. ( iota x ph ) / y ]. ps <-> E. y ( A. x ( ph <-> x = y ) /\ ps ) ) ) |