This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.111 in WhiteheadRussell p. 184. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotasbc2 | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ↔ ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotasbc | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ) ) | |
| 2 | iotasbc | ⊢ ( ∃! 𝑥 𝜓 → ( [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) | |
| 3 | 2 | anbi2d | ⊢ ( ∃! 𝑥 𝜓 → ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) ) |
| 4 | 3anass | ⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) | |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
| 6 | 19.42v | ⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) | |
| 7 | 5 6 | bitr2i | ⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) |
| 8 | 3 7 | bitrdi | ⊢ ( ∃! 𝑥 𝜓 → ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
| 9 | 8 | exbidv | ⊢ ( ∃! 𝑥 𝜓 → ( ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ↔ ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
| 10 | 1 9 | sylan9bb | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ↔ ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |