This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of iotanul using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotanul2 | ⊢ ( ¬ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota | ⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } | |
| 2 | n0 | ⊢ ( ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ) | |
| 3 | eluni | ⊢ ( 𝑣 ∈ ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ↔ ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ) ) | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | sneq | ⊢ ( 𝑤 = 𝑦 → { 𝑤 } = { 𝑦 } ) | |
| 6 | 5 | eqeq2d | ⊢ ( 𝑤 = 𝑦 → ( { 𝑥 ∣ 𝜑 } = { 𝑤 } ↔ { 𝑥 ∣ 𝜑 } = { 𝑦 } ) ) |
| 7 | 4 6 | elab | ⊢ ( 𝑦 ∈ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ↔ { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 8 | 7 | biimpi | ⊢ ( 𝑦 ∈ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } → { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑣 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ) → { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 10 | 9 | eximi | ⊢ ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ) → ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 11 | 3 10 | sylbi | ⊢ ( 𝑣 ∈ ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } → ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑣 𝑣 ∈ ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } → ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 13 | 2 12 | sylbi | ⊢ ( ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } ≠ ∅ → ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 14 | 13 | necon1bi | ⊢ ( ¬ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } = ∅ ) |
| 15 | 1 14 | eqtrid | ⊢ ( ¬ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = ∅ ) |